Airplane detection based on rotation invariant and sparse coding in remote sensing images
نویسندگان
چکیده
Airplane detection has been taking a great interest to researchers in the remote sensing filed. In this paper, we propose a new approach on feature extraction for airplane detection based on sparse coding in high resolution optical remote sensing images. However, direction of airplane in images brings difficulty on feature extraction. We focus on the airplane feature possessing rotation invariant that combined with sparse coding and radial gradient transform (RGT). Sparse coding has achieved excellent performance on classification problem through a linear combination of bases. Unlike the traditional bases learning that uses patch descriptor, this paper develops the idea by using RGT descriptors that compute the gradient histogram on annulus round the center of sample after radial gradient transform. This set of RGT descriptors on annuli is invariant to rotation. Thus the learned bases lead to the obtained sparse representation invariant to rotation. We also analyze the pooling problem within three different methods and normalization. The proposed pooling with constraint condition generates the final sparse representation which is robust to rotation and detection. The experimental results show that the proposed method has the better performance over other methods and provides a promising way to airplane detection.
منابع مشابه
Rice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملEnd-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images
Airplane detection in remote sensing images remains a challenging problem due to the complexity of backgrounds. In recent years, with the development of deep learning, object detection has also obtained great breakthroughs. For object detection tasks in natural images, such as the PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) VOC (Visual Object Classes) Challenge, ...
متن کامل